On the Differential Privacy of Bayesian Inference
نویسندگان
چکیده
We study how to communicate findings of Bayesian inference to third parties, while preserving the strong guarantee of differential privacy. Our main contributions are four different algorithms for private Bayesian inference on probabilistic graphical models. These include two mechanisms for adding noise to the Bayesian updates, either directly to the posterior parameters, or to their Fourier transform so as to preserve update consistency. We also utilise a recently introduced posterior sampling mechanism, for which we prove bounds for the specific but general case of discrete Bayesian networks; and we introduce a maximum-a-posteriori private mechanism. Our analysis includes utility and privacy bounds, with a novel focus on the influence of graph structure on privacy. Worked examples and experiments with Bayesian naïve Bayes and Bayesian linear regression illustrate the application of our mechanisms.
منابع مشابه
Online Query Answering with Differential Privacy: a Greedy Approach using Bayesian Inference
Data privacy issues frequently and increasingly arise for data sharing and data analysis tasks. In this paper, we study the problem of online query answering under the rigorous differential privacy model. The existing interactive mechanisms for differential privacy can only support a limited number of queries before the accumulated cost of privacy reaches a certain bound. This limitation has gr...
متن کاملBayesian inference under differential privacy
Bayesian inference is an important technique throughout statistics. The essence of Beyesian inference is to derive the posterior belief updated from prior belief by the learned information, which is a set of differentially private answers under differential privacy. Although Bayesian inference can be used in a variety of applications, it becomes theoretically hard to solve when the number of di...
متن کاملRobust and Private Bayesian Inference
We examine the robustness and privacy of Bayesian inference, under assumptions on the prior, and with no modifications to the Bayesian framework. First, we generalise the concept of differential privacy to arbitrary dataset distances, outcome spaces and distribution families. We then prove bounds on the robustness of the posterior, introduce a posterior sampling mechanism, show that it is diffe...
متن کاملOptimal User-Centric Data Obfuscation
Perturbing information, before being shared with untrusted entities, is an effective and widely proposed approach to protect users’ privacy. However, the privacy of users and the utility of the obfuscated information are at odds with each other, and increasing one results in decreasing the other. In this paper, we propose a methodology for designing protection mechanisms that optimally trade ut...
متن کاملRobust, Secure and Private Bayesian Inference
This paper examines the robustness and privacy properties of Bayesian estimators under a general set of assumptions. These assumptions generalise the concept of differential privacy to arbitrary outcome spaces and distribution families. We demonstrate our results with a number of examples where they hold. We then prove general bounds on the change of the posterior distribution due to changes in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016